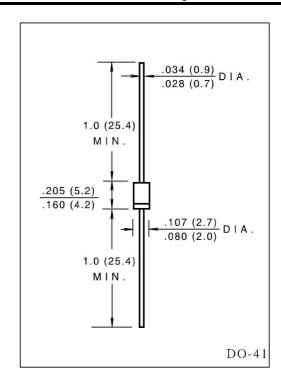


FAST RECOVERY RECTIFIER

FR101 **THRU** FR107

VOLTAGE RANGE **CURRENT**

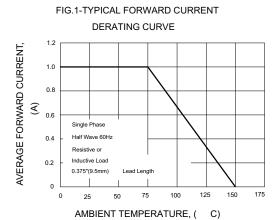

50 to 1000 Volts 1.0 Ampere

FEATURES

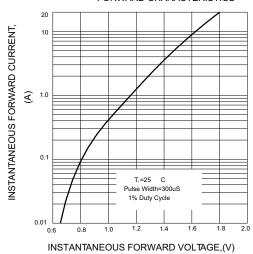
- Low cost construction.
- Fast switching for high efficiency.
- · Low reverse leakage
- · High forward surge current capability.
- High temperature soldering guaranteed: 260°C/10 seconds, 0.375" (9.5mm)lead length at 5 lbs (2.3kg) tension.

MECHANICAL DATA

- · Case: transfer molded plastic
- Epoxy: UL94V 0 rate flame retardant.
- · Polarity: Color band denotes cathode end.
- Lead: Plated axial lead, solderable per MIL STD 202E method 208C
- Mounting position: Any
- Weight: 0.012 ounce, 0.33grams


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

- Ratings at 25°C ambient temperature unless otherwise specified
- Single phase, half wave, 60Hz, resistive or inductive load.
- For capacitive load derate current by 20%


		SYMBOLS	FR101	FR102	FR103	FR104	FR105	FR106	FR107	UNIT
Maximum Repetitive Peak Reverse Voltage		V_{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		V_{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		V_{DC}	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, 0.375" (9.5mm) lead length at $T_A = 75^{\circ}C$		I _(AV)	1.0							Amp
Peak Forward Surge Current										
8.3ms single half sine - wave superimposed on		I_{FSM}	30							Amps
rated load (JEDEC method)										
Maximum Instantaneous Forward Voltage at 1.0A		$V_{\rm F}$	1.3						Volts	
Maximum DC Reverse Current at rated	$T_A = 25^{\circ}C$	${ m I}_{ m R}$	5.0							,, ,
DC blocking voltage	$T_A = 100^{\circ}C$	1R	100							$\mu \mathbf{A}$
Maximum Reverse Recovery Time (Note 3) $T_j = 25^{\circ}C$		t_{rr}		150		250	50	00	nS	
Typical Junction Capacitance (Note 1)		C_{J}	15							pF
Typical Thermal Resistance (Note2)		$R_{ heta JA}$	50							°C/W
Operating and Storage Temperature Range		T_{J}	(-65 to +150)							$^{\circ}\mathbb{C}$
Storage Temperature Range		T_{STG}	(-65 to +150)							$^{\circ}\!\mathbb{C}$

NOTES:

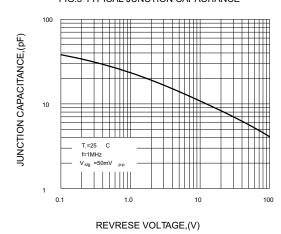

- 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
- 2. Thermal Resistance from Junction to Ambient at 0.375" (9.5mm) lead length, P.C. board mounted.
- 3. Reverse Recovery Test Condition: $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$

FIG.5-TYPICAL JUNCTION CAPACITANCE

FIG.2-MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

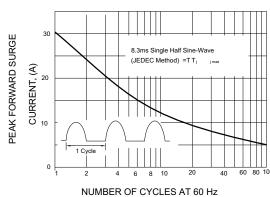
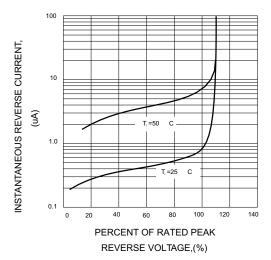
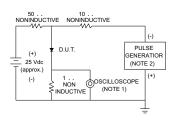




FIG.4-TYPICAL REVERSE
CHARACTERISTICS

FIG.6-TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTIC

-1.0A -1cm -SET TIME BASE FOR 50/100ns/cm